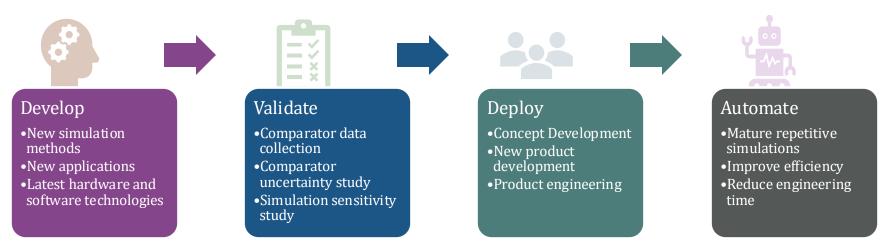


Simulation through

Orthopaedic Device Lifecycle

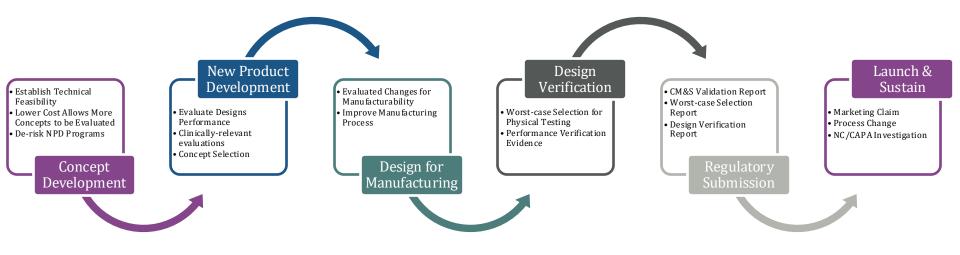
Cheryl Liu, PhD


Director, Computer Modeling & Simulation Stryker Joint Replacement

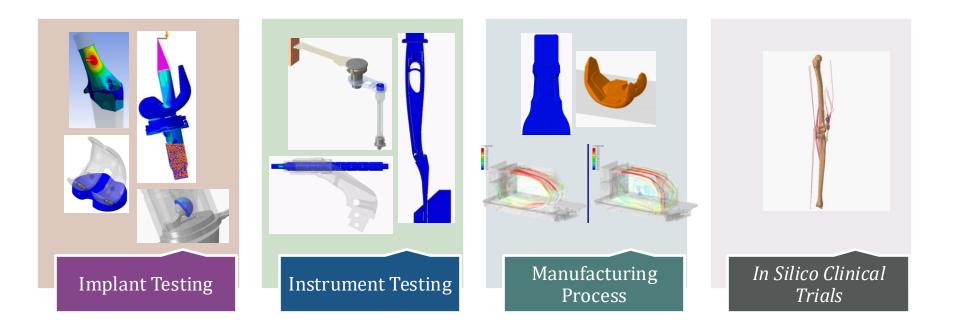
Overview Stryker JR Modeling and Simulation

Objectives

 Develop, validate, and deploy advanced simulation technologies and process automations



Overview Stryker JR Modeling and Simulation

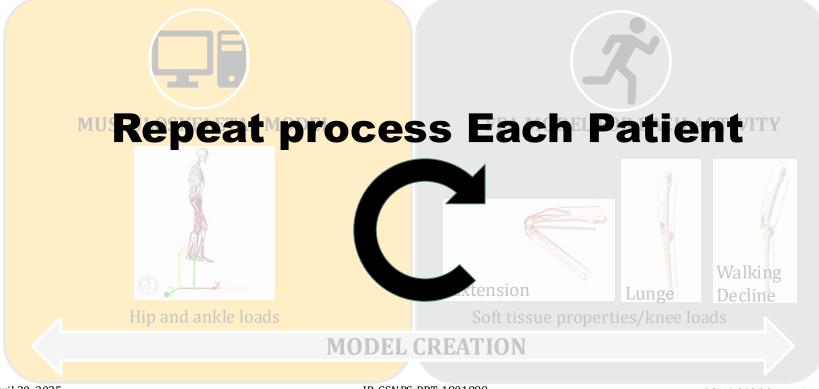

Objectives

• Support orthopaedic device lifecycle for better, faster, and cheaper innovations that make healthcare better

Applications Stryker JR Modeling and Simulation

In Silico Clinical Trial Stryker JR Knee Kinematic Model Library

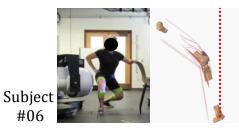
April 30, 2025


JR-GSN PS-PPT-1801889

stryker

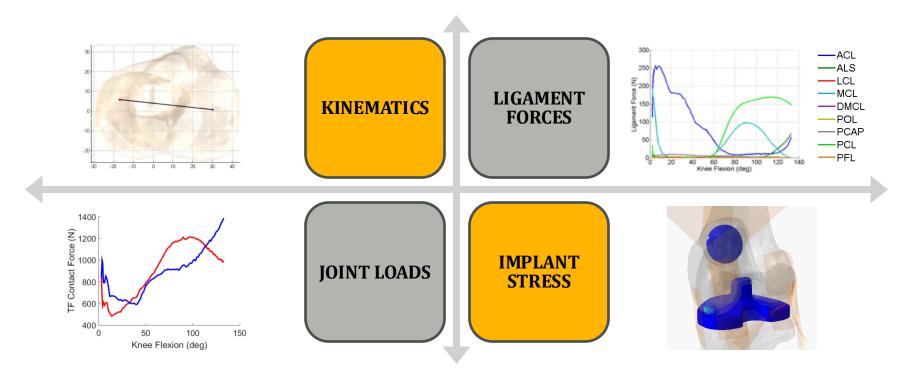
In Silico Clinical Trial

Stryker JR Knee Kinematic Model Library


In Silico Clinical Trial

Stryker JR Knee Kinematic Model Library

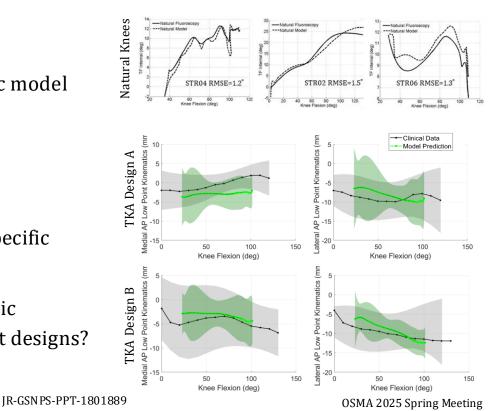
				Limb	Activities											
Subject	Gender	Age	BMI	Coronal Alignment	Extension	Lunge	Decline	Incline	Step Down	Step Up	Chair Rise	Normal Level Walking	Pivot Walk	Seiza	Laxity Assessment	Leg Press
01	F	63	23.5	2° Valgus	х	х	х	x	х	х	x	х	х	х		
02	М	51	19.3	3° Varus	х	х	х	х	х	х	x	х	х	х		
03	М	72	23.3	3° Varus	х	х	х	х	х	х	x	х	х	х		
04	F	76	18.1	1.5° Valgus	Х	х	Х	х		х		х	х	х		
05	М	73	22.7	6° Valgus	х	х	х	х	х	х	x	х	х	х		
06	F	76	23.7	5° Valgus	х	х	х	х	х	х	x	х	х	х		
07	М	64	31.5	5° Varus	х	х	х	х	х	х	x	х	х	х		
08	F	62	31.4	7° Varus	Х	х	х	x	х	х	x	х	Х			
09	М	72	34.9	6° Varus	Х	х	х	x	х	х	x	х	Х			
10	М	73	26.7	1° Valgus	Х	х			х	х	x	х	Х		х	х
11	F	58	38.4	3° Valgus	Х	х			х	х	x	х	х			х
12	М	51	31.5	1° Varus	х	х			х	х	x	х	х		х	х



April 30, 2025

In Silico Clinical Trial

Stryker JR Knee Kinematic Model Library

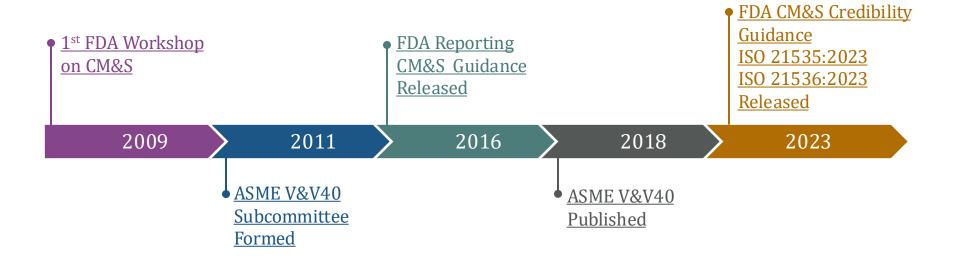

In Silico Clinical Trial Stryker JR Knee Kinematic Model Library

in vivo Validation

• Can each subject- and activity-specific model capture natural kinematics?

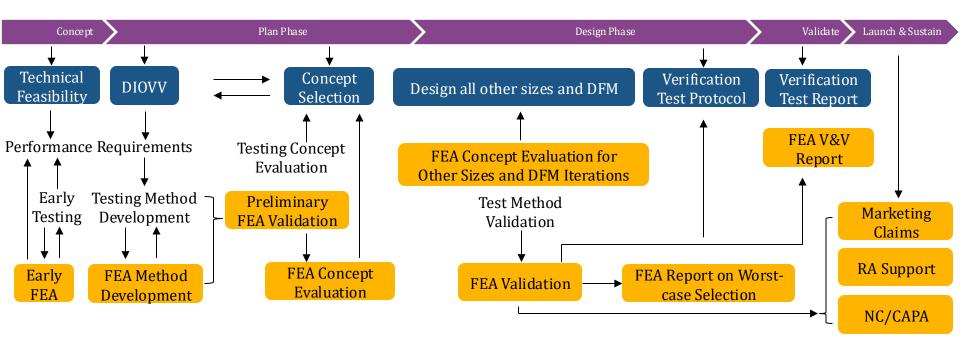
Population-based validation

- Can model library capture implant-specific post-op fluoroscopic kinematics?
- Can model library capture fluoroscopic kinematic difference between implant designs?



stryker

9



Evolution of Regulatory Guidance Key Events for Stryker JR

Model Credibility Integrated into Stryker JR product lifecycle

Acknowledgement

Small but highly effective and impactful team!

Disclaimer

The material presented is intended for educational purposes only. A surgeon must always rely on his or her own professional clinical judgment when deciding whether to use a particular product when treating a particular patient. Stryker does not dispense medical advice and recommends that surgeons be trained in the use of any particular product before using it in surgery. Stryker does not endorse or support the unapproved uses of its products.

Stryker Corporation or its divisions or other corporate affiliated entities own, use or have applied for the following trademarks or service marks: Stryker. All other trademarks are trademarks of their respective owners or holders.

Content ID: JR-GSNPS-PPT-1801889

Copyright © 2025 Stryker